
Engineering Software Research CenterEngineering Software Research Center
www.esrcen.com esrc.nathanm7@gmail.com

Jl. Situ Aksan 29, Bandung 40221
Tel: (62)-21-6041685, Mobile: (62)-878-25670070

BALI V.1.0BALI V.1.0
Basic Application Language from Indonesia

A general-purpose interactive programming language for coding class,
science and engineering apps development

by

Dr. Nathan Madutujuh
Engineering Software Research Center

http://bali.ptamck.com

April 2023

http://www.esrcen.com/
http://bali.ptamck.com/
mailto:esrc.nathan@gmail.com

PREFACE

BALI (Basic Application Language from Indonesia) is a new and unique programming language
created by Dr. Nathan Madutujuh from ESRC, Bandung, Indonesia. BALI can be learned in very short
time to create useful applications for various fields. The language is integrated with its development
and run-time environment, so the development, testing and running of the application created can be
done seamlessly.

BALI uses interpreter instead of compiler. But with the help of modern and fast CPU, the running
time is quite fast. And also the language is very easy to extend by adding user functions and
procedures. To make it easier to learn, the syntax of BALI language is a mix of C and Pascal syntax,
taken the best of both languages.

BALI can be used for any level of students, from elementary to college students. It has several
modules including Control structures, Timer, MIDI, Media Player, Text File, Graphics, String functions,
Numerical functions, Vector and Matrix functions, Web Browser, Vector and Matrix operations, and a
simple Finite element module by ESRC.

Also a unique feature in BALI is a user can use an object name and object parameters directly inside
any expression (object name can be used for variable name), and if any value is assigned to an object
name, it will be displayed automatically in object's visual part. This will enable a very intuitive and
make it very easy to learn visual programming concept.

To make the learning curve faster, several examples and tutorials have been provided inside BALI
development environment, so a thick and difficult to read manual is not needed anymore. Also an
online community and offline communities in several cities will be provided as a platform to share
and market the application created.

BALI can be afforded with a very low price, according to the modules integrated in the system.
Hopefully using BALI, all level of students can learn and make a programming language easily and in
short time. Programming must be fun !

Bandung, August 17, 2022

Dr. Nathan Madutujuh

TABLE OF CONTENTS

Preface
Table of contents

Introduction to BALI
BALI Programmer's Community
BALI Program Features
Learning by examples

Non-visual Programming Tutorial
 Hello Program
 C = A + B
 ABC Formula

Visual Programming Tutorial:
 Visual Programming
 Hello Program
 Simple Piano
 Text Animation
 Moving Car

Advanced Tutorial:
 Simple Cantilever
 Simple Beam
 Roof Truss
 Portal Frame

Advanced Features:

String functions
Math functions
File functions
Graphics functions
Vector and Matrix

Special Features:
Sensors
FEM Module

BALI Syntax Reference
BALI Functions List
SANSFEM Reference
MIDI Instrument Information

Introduction to BALI

BALI (Basic Application Language from Indonesia) is a new programming language created by Dr.
Nathan Madutujuh from ESRC, Bandung, Indonesia. The name is taken from famous Bali Island, the
tropical paradise in Indonesia.

The main reasons to create another programming language are the need for a simple and easy to
learn a modern, event-driven, bject oriented visual programming language that can be used for
coding class for students from elementary to advanced level.

BALI can be used to create useful applications for various fields in a very short time. For example, the
hello program can be created and run in less than 5 minutes. The piano program using MIDI modules
can be created in 10 minutes.

The language is integrated with its development and run-time environment, so the development,
testing and running of the application created can be done seamlessly. Although BALI uses
interpreter instead of compiler, but with the help of modern and fast CPU, the running time is quite
fast.

Also the language is very easy to extend by adding user functions and procedures. To make it easier
to learn, the syntax of BALI language is a mix of C and Pascal syntax, taken the best of both languages.
All modules and functions, including user-defined functions are compiled as library, to get maximum
speed for procedures and functions that will take long time to run.

BALI has several modules as in a standard programming language, identifiers, variables, constants,
expressions and statements, including logical and loop control structures, Timer, MIDI, Media Player,
Text File, Graphics, String functions, Numerical functions, Vector and Matrix functions, Web Browser,
and also a simple Finite element module by ESRC.

Using BALI, any elementary student can learn how to develop a visual program easily, and any
scientist or engineer can develop a program prototype in a very fast time, without a long time
learning curve as in other programming languages.

In other words, BALI is a combination of the stable and clear syntax of Pascal and C, the flexibility of
Python, the Visual objects of C#, and the matrix and numerical features of MathCad.

BALI Programmer's Community

Because BALI will be distributed a very affordable price, according to the modules integrated in the
system, it can be targeted to a very wide market. The license price is as follows:

Category Level Local Price International Price
Elementary students K1-K6 Rp. 50,000,- USD 10
High school students K7-K12 Rp. 100,000,- USD 20
College students Rp. 150,000,- USD 30
Others Rp. 250,000,- USD 50

To make the learning curve faster, several examples and tutorials have been provided inside BALI
development environment, so a thick and difficult to read manual is not needed anymore. BALI user's
can register themselves to BALI Programmer's Community website, to be able to communicate and
share to each other, and also sale or distribute the developed applications to other BALI users. In the
community, useful tutorials and sample applications will be provided and shared.

Also several BALI coding classes will be established in major cities in Indonesia, this will create job

and business opportunities for young people in Indonesia and other countries. Using BALI, all level of
students can learn and make a programming language easily and in short time.
Programming must be fun !

A BALI Program

A BALI program is a collection of nonvisual and visual objects. Program's code can be placed at main
panel code, any timer code, and any object event handler's code. There are 2 default timers available
that can be used to control the execution of each part of code. A visual object can be added, renamed,
and set its parameters accordingly. If a visual object is also reflecting a variable, the name of the
visual object should be the variable name.

BALI Program Features

BALI has many features usually found in modern visual computer languages. Among them are visual
objects, event driven programming, timers, MIDI music, control structures, strings, files, math, graphics,
vector and matrix. Also a unique feature in BALI is a user can use an object name and object
parameters directly inside any expression (object name can be used for variable name), and if any
value is assigned to an object name, it will be displayed automatically in object's visual part. This will
enable a very intuitive and an easy to learn visual programming environment.

BALI language features are :

 Visual programming environment with integrated IDE and Run-time
 Fast and Easy to learn for all ages level ("Hello" program in 5 minutes)
 Low-cost hardware requirement
 For coding class or engineering applications
 Interpreter and Compiler language
 Interactive and Dynamic Object Oriented Programming :

 Label, Button, Checkbox, Edit, Select, Listbox, Combobox, Trackbar, Dial, Memo, Image,
 Calendar, MediaPlayer, Browser, Vector, Matrix

 Object name can be used as variable
 User editable object parameters
 Visual Programming with IDE
 Built-in Timers and separate timer event handler for each object
 Event-driven programming with user defined handlers
 Mixed C and Pascal syntax
 No Variable declaration
 No semi-colon required
 = for assignment, == for equality checking
 script for event handler, extendable functions
 User defined extendable library
 Strings and Keyboard Functions
 Integer and Floating Number Math Functions
 MIDI Module for Kids
 Graphics Module
 Text File module
 Database Module : SQLite*
 Vector and Matrix Module
 SANS Finite Element Module
 Location, Acceleration Sensors
 Data Acquisition Module*
 Multiple platform support

Non-visual Programming Tutorial

1. Hello Program

 Enter : PRINT “HELLO !”; at the main code

Click [RUN], then the string “HELLO !” will appear at Tab Text Output as follows:

Another variation: add the following to the main code:

PRINT_TITLE;
BLANK_ON;
PRINT "HELLO";

The the output will be :

2. C = A + B

Here we will create a simple program that adds two numbers A and B, and display it as C.Another
Add the following to the main code:

PRINT_TITLE;
BLANK_ON;
A = 10;
B = 20;
C = 30;
PRINT "C = ", C;

The text output will be :

3. ABC Formula

Find roots of a quadratic equation : A*X^2 + B*X + C = 0

The text output will be:

Visual Programming Tutorial:

1. Visual Programming concepts

A visual program consists of several visual objects with its own parameters and event handler, main
code and separate code for each timer if used.
Event handler is a part of code to be executed when an event happened.
An example of an event are : Keyboard clicked, object clicked, object double clicked, mouse down,
mouse up, mouse move, etc.

Certain object can have value that can be used directly in any expression using its name as variable.
If only the name of the object is used as variable, the value will be default according to the type of the
object. Other object parameters can be accessed also by using the following syntax:

OBJECTNAME.parametername
A.Left
A.FontSize

Object parameters can be changed during edit mode interactively, through the Object Parameters
Window:

Object parameters can be changed also during running time by using the above format. For example:

A.Left = X + 10;

2. Hello Program

Add a button named 'Hello'.
Add a text at event handler OnClick:

 DISPLAY “HELLO !”;

When the button is clicked, the message “HELLO !” will be displayed :

3. Program: C = A + B

Add 3 Edit buttons A,B and C, and name it accordingly.

Add code to the main code tab:

The output will be at text output tab and at visual objects itself as follows:

And at visual object:

4. ABC Formula

The main code will be:

A = 1;
B = 3;
C = 1;
PRINT "A = ",A;
PRINT "B = ",B;
PRINT "C = ",C;
PRINT;

DISK = B*B - 4*A*C;
PRINT "DISK = ",DISK;
PRINT;
IF (DISK < 0) {PRINT("NO ROOTS"); STOP}
X1 = (-B + SQRT(DISK))/(2*A);
X2 = (-B - SQRT(DISK))/(2*A);

PRINT "X1 = ",X1;
PRINT "X2 = ",X2;

The output will be:

5. Simple Piano

Add several button, rename and select MIDI's instrument, volume, duration and note number for
each button according to the note index.

Try the piano, click any button.

6. Text Animation

7. Moving Car

Add a button, left position = 10, width = 80, height = 32

Add at Timer1 code:

X = X + 50;
IF (X > (SCRWID-100)) X = 10;
B1.Left = X;
B1.Caption = X;

Then click [RUN], Car will move to the right and back.

Tips:

Add a second timer for gun to create a simple arcade game.

8. Drawing graphics object with BALI

Add an Image Object, name = A, Width = 400, Height = 300

Filename = Yellow or can be entered a file name (test.bmp for example)

A rectangle yellow box will appear

Enter a code as follows at MainCode Tab

Drawing will appear

Advanced Tutorial:

1. SANSFEM : Simple Cantilever

Select from menu Test FEM: Cantilever Beam.

The following text will be added to the Main Code:

PRINT_TITLE;
BLANK_ON;

// Initialization:
SANS_CLEARMEM;

// NLS,NLC,R1,R2,R3,R4,R5,R6, Flag1
SANS_INIT(1,1,0,0,0,0,0,0, 0);

// Material Properties:
// AddProp(matname,sctname : string; Es,G,PR,C,Ywg,Ag,Av,Aw,Ix,Iy,Iz : double;
// scttype : integer; d,bw,bf,tf,bb,tb,a : double;
// mopt,comp,nb : integer; n,bc,tphc,dc,fc,fy : double) : integer;
SANS_PROP(M1,S1,2.1e5,1e4,0.3,0,0.0024,240,240,240,10880,2880,8000,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0);

// Node Coordinates: id, x,y,z
SANS_NODE(1,0, 0,0);
SANS_NODE(2,100,0,0);

// Support Condition: id, j, R1,R2,R3,R4,R5,R6
SANS_SUPPORT(1,1, 1,1,1,1,1,1);

// Truss Element Data : name, n1,n2, mat
// SANS_TRUSS(1,1,2,1);

// Frame Element Data: name, n1,n2, alpha,rgzf1,rgzf2,mat,rel,rge
SANS_FRAME(1,1,2,0,0,0,1,0,0);

// Load Factor Data: ldcomb, name, SW,DL,LL,EQX,EQZ,WX,WZ,EPX,EPZ,PS
SANS_LOADCOMB(1,SW,1,0,0,0,0,0,0,0,0,0);

// Joint Load Data: name, ldcase, j, fx,fy,fz,mx,my,mz
SANS_JLOAD(SW,1,2,0,-1000,0,0,0,0);

// Building Skyline Matrix:
SANS_DOF;
SANS_SKYLINE;
SANS_SHOWDOF;
SANS_SHOWFROW;
SANS_SHOWDIAG;

// Compute Global Stiffness:
SANS_STIFF;

// Before Factorization:
PRINT "Before Factorization";
SANS_SHOWSTIFF;

// After Factorization:
PRINT "After Factorization";
SANS_FACTORIZE;
SANS_SHOWSTIFF;

// Compute Load Case : 1
SANS_LOAD(1);
SANS_SHOWFVEC;
SANS_SHOWRVEC;

// Solve for Load Case : 1
SANS_SOLVER(1);
SANS_SHOWXVEC;
SANS_STOREDISP(1);
SANS_COMPUTEFORCE(1);
SANS_STOREREACT(1);
SANS_GETDISP(1,0,1);
SANS_GETDISP(2,0,1);
SANS_GETREACT(1,0,1);
SANS_GETFRAMEF(1,0,1);

SANS_GRAPH(0,1);

After click [RUN], the result will be at Text Out tab:

The text output will be:

Program Name : SANS - Cantilever Beam
Copyright (c): Nathan

Skyline: ND=6, NR=6, TCH=21

FROW : 1, 1, 1, 1, 1, 1,
DIAG : 1, 2, 4, 7, 11, 16,
Before Factorization

Global Stiffness Matrix SS:

 5.04E005 0 0 0 0 0
 0 20160 0 0 0 -1.008E006
 0 0 7257.6 0 3.6288E005 0
 0 0 0 1.088E006 0 0
 0 0 3.6288E005 0 2.4192E007 0
 0 -1.008E006 0 0 0 6.72E007

After Factorization

Global Stiffness Matrix SS:

 5.04E005 0 0 0 0 0
 0 20160 0 0 0 -50
 0 0 7257.6 0 50 0
 0 0 0 1.088E006 0 0
 0 0 50 0 6.048E006 0
 0 -50 0 0 0 1.68E007

FVEC : 0, -1000, 0, 0, 0, 0,
RVEC : 0, 0, 0, 0, 0, 0,
XVEC : 0, -0.19841, 0, 0, 0, -0.0029762,
DD (ldcase=1) : 0, 0, 0, 0, 0, 0,
DD (ldcase=1) : 0, -0.19841, 0, 0, 0, -0.0029762,
RR (ldcase=1) : 0, 1000, 0, 0, 0, 1E005,
FF (ldcase=1) : 0, 1000, 0, 0, 0, 1E005,
0, -1000, 0, 0, 0, 1.1099E-011, 0, -50000,

2. SANSFEM: Simple Beam

3. SANSFEM: Roof Truss

4. SANSFEM: Portal Frame

Advanced Features:

1. String functions

 Trim(s) // remove pre and post spaces
 UpperCase(s) // change all characters to uppercase
 LowerCase(s) // change all characters to lowercase
 Copy(s,p,n) // copy a substring from location p, n characters
 IntToStr(n) // convert integer n to string
 NumToStr(x) // convert numeric x to string
 TimeToStr(t) // convert time t to string
 DateToStr(d) // convert date d to string
 Length(s) // length of a string
 Pos(s1,s) // find a string s1 inside s
 Val(s) // value of a string
 StrToInt(s) // string to integer
 StrToNum(s) // string to numeric
 StrToTime(s) // string to time
 StrToDate(s) // string to date

2. Math functions

 (n = integer, x = floating number)

 Integer Functions:

 Round(x) // Round to nearest integer
 Trunc(x) // Truncated to nearest lower integer
 Int(x) // Truncated to integer part
 Ceil(x) // Get nearest higher integer
 Floor(x) // Get nearest lower integer
 Even(n) // 0 if not even number, 1 if even number
 Odd(n) // 0 if not odd number, 1 if odd number
 Fact(n) // factorial : 1*2*3*n-1*n
 Inc(n) // n+1
 Dec(n) // n-1
 RandomRange(n1) // 0..n1-1
 RandomRange(n1,n2) // n1..n2

 Float Functions :

 Random() // 0..1
 Random(n1) // 0..n1-1
 Random(n1,n2) // n1..n2
 Abs(x) // absolute value of x
 Sign(x) // sign of x : +1 if > 0, 0 if zero, -1 if < 0
 Deg(x) // Degree of a radiant angle
 Rad(x) // Radiant of a degree angle
 Sqrt(x) // square root of x
 Sqr(x) // x^2
 Power(x,y) // x^y
 Exp(x) // e^x
 Log(x) // Ln(x)/Ln(10)
 Log(a,b) // Ln(a)/Ln(b)
 LogN(a,b) // Ln(a)/Ln(b)
 Log2(x) // Log2(x)
 Log10(x) // Log10(x)
 Ln(x) // Ln(x)
 Max(x1,x2,...) // max of (x1,x2,...)
 Min(x1,x2,...) // min of (x1,x2,...)
 Length(x1,x2,...) // Sqrt(x1^2 + x2^2 +)
 Avg(x1,x2,...) // (x1+x2+...)/n
 Sum(x1,x2,...) // x1 + x2 + ...
 SumSqr(x1,x2,...) // x1^2 + x2^2 +
 SRSS(x1.x2,...) // Sqrt(x1^2 + x2^2 +)
 CQC(x1,x2,...) // CQC(x1,x2,...)

 Linear Interpolation:

 LinearInterp(x,x1,y1,x2,y2); // Linear interpolation of y using x value

 Trigonometric functions:

 Sin(x) // Sine of x, radian
 Cos(x) // Cosine of x, radian

 Tan(x) // Tangent of x, radian
 Sec(x) // Secant of x, radian
 Cosec(x) // Cosecant of x, radian
 CoTan(x) // CoTangent of x, radian
 SinD(x) // Sine of x, degree
 CosD(x) // Cosine of x, degree
 TanD(x) // Tangent of x, degree
 SecD(x) // Secant of x, degree
 CosecD(x) // Cosecant of x, degree
 CoTanD(x) // CoTangent of x, degree
 Asin(x) // ArcSine of x, radian
 Acos(x) // ArcCosine of x, radian
 Atan(x) // ArcTangent of x, radian
 Asec(x) // ArcSecant of x, radian
 Acosec(x) // ArcCoSecant of x, radian
 Acotan(x) // ArcCoTangent of x, radian
 SinH(x) // Sine Hyperbolic of x, radian
 CosH(x) // Cosine Hyperbolic of x, radian
 TanH(x) // Tangent Hyperbolic of x, radian
 SecH(x) // Secant Hyperbolic of x, radian
 CosecH(x) // Cosecant Hyperbolic of x, radian
 CoTanH(x) // Cotangent Hyperbolic of x, radian
 AsinH(x) // Arc Sine Hyperbolic of x, radian
 AcosH(x) // Arc Cos Hyperbolic of x, radian
 AtanH(x) // Arc Tangent Hyperbolic of x, radian
 AsecH(x) // Arc Secant Hyperbolic of x, radian
 AcosecH(x) // Arc Cosecant Hyperbolic of x, radian
 AcoTanH(x) // Arc CoTangent Hyperbolic of x, radian

 Calculus :

 Vector :

 VecLen(a,b,c,...) // Length : sqrt(a^2 + b^2 + c^2 + ….)
 VecSum(a,b,c,...) // Sum : a + b + c + ...
 VecAvg // Average : (a + b + c + ….)/n
 VecSumSqr // SumSqr : a^2 + b^2 + c^2 + ….
 VecSRSS // SRSS : sqrt(a^2 + b^2 + c^2 + ….)

 Matrix :

 MATRIX_NULL(A) // Matrix, all 0
 MATRIX_UNIT(A) // Matrix, all 1
 MATRIX_RANDOM(A) // Matrix, all random numbers
 MATRIX_COL(A,n) // Column n of matrix A
 MATRIX_ROW(A) // Row n of matrix A
 MATRIX_TRIDIAG(A) // Trdiagonal Matrix A
 MATRIX_TRANSPOSE(A) // Transpose of A
 MATRIX_DETERMINANT(A) // Determinant of A
 MATRIX_INVERSE(A) // Inverse of A
 MATRIX_FACTORIZE(A) // Factorize of A = L.D.L^T
 MATRIX_SOLVER(A,X,Y) // Solve A.x = y

3. File functions

 OpenInpText(fname) // Open input text file
 CloseInpText(fname) // Close input text file
 Readln(v1,v2,v3,...) // Read a line from input text file

 OpenOutText(fname) // Open output text file
 CloseOutText(fname) // Close output text file
 Writeln(v1,v2,v3,...) // Write several variables

4. Graphics functions

 To draw a graphic, first select Target Image, then use any graphics command to draw on the target
 image. Using this method, we can draw to several images easily.

 SCRWID // Screen Width in pixels
 SCRHGT // Screen Height in pixels

 SelectImage(objname) // Select Image from an object
 PenMode(pm) // Set Pen Mode
 Color(color) // Set color(color)
 Sound(filename,duration,pitch) // Play a wav file

 Text(x,y,agl,fsize,fcolor,txt) // Draw a string with angle agl, size fsize
 Line(x1,y1,x2,y2,thick,style,color) // Draw a line from x1,y1 to x2,y2
 Rect(x1,y1,x2,y2,thick,style,color,fillstyle,fillcolor) // Draw a rectangle from x1,y1 to x2,y2
 Circle(x,y,r[,thick,style,color,fillstyle,fillcolor) // Draw a circle using x,y,r
 Ellipse(x,y,rx,ry,thick,style,color,fillstyle,fillcolor) // Draw an ellipse using x,y,rx,ry
 Polygon(x,y,r,n,startagl,thick,style,color,fillstyle,fillcolor) // Draw a n-sides polygon

5. Vector and Matrix

 Add a 3x3 matrix, type = double, name = A
 Add a 3x1 vector, type = double, name = X
 Add a 3x1 vector, type = double, name = B
 Set A as a tridiagonal matrix, Dii = 2.0, Dij = -1.0;
 Set B[1] = 1.0;
 Solve for X

A Tridiagonal matrix will appear:

Factorize the A matrix into Cholesky L*U Format and Solve for X:

B = {1.0, 0, 0}

The Solver will use Cholesky Factorized Matrix A to solve the linear equation.

The result is :

X = {0.75, 0.5, 0.25}

Other Matrix commands:

MATRIX_INVERSE(A); → To get the inverse of matrix A

BALI Language Syntax Reference

1. Identifier

 Valid chars: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789_
.

 Examples: _aBc123 a variable
A.Color an object parameter

2. Constants

 String : "abc123"
 Integer : 1,12,-30
 Float : -123.456, -123.456E-123
 Special : Pi, Euler

3. Variable

 Variable will be automatically defined globally when first found
 Object Name is a variable
 Visual Object text will be updated automatically due to the related variable change

4. Statements and Blocks

 Statements are consisted of single line statements or multiple statements surrounded by {} named a
 block. A block will be treated logically as a single statement. Each statement can be ended with ;
 (optional).

 s1
 {s1; s2; s3}

5. Operators and Keywords

 Assignment : =
 Numeric : +,-,*,/,^
 Unary : ++,--,+=,-=,/=,*=,^=
 Logic : !,NAND AND NOR XOR OR NOT
 Equality : <,>,==,<>,!=,<=,>=
 Keywords : IF, ELSE, FOR, TO, STEP, DO, WHILE, REPEAT, UNTIL

6. Expressions

 expression : any combination of parentheses, identifiers and operators

 Numeric expression:

 -exp
 !exp
 exp2 + exp2
 var1 += exp1
 var1 -= exp1
 var1 *= exp1

 var1 /= exp1
 var1 ^= exp1
 exp
 sin(exp)
 exp1+exp2-exp3
 (exp)

 Logical expression:

 (a and b must be surrounded by () if more than one entities)
 (a and b can be logical expression or numeric expression or mixed)

 !a
 a != b
 a <> b
 a > b
 a < b
 a >= b
 a <= b

7. Control Structures

 Control structures can be used to direct the flow of code execution, logical decision and repetition.
 Single line control structures contain everything in one line, while Multi-line control structures can have
 multiple lines for each block.

 a. Single line control structures:

 IF () s1;
 IF () s1 ELSE s2;
 LOOP (i,i1,i2,n) s1;
 FOR i = j TO k STEP n DO s1;
 WHILE (e) DO s1;
 REPEAT s1 UNTIL (e);

 b. Multi-line control structures

 IF (a) {
 ...
 }

 IF (a) {
 ...
 } ELSE {
 ...
 }

 SWITCH (v) {
 a : {s1};
 b : {s2};
 c : {s2};
 }

 LOOP (i,i1,i2,n) {
 }

 FOR i = j TO k STEP n DO {
 }

 WHILE (e) DO {
 }

 REPEAT
 ...
 UNTIL (e)

BALI Functions List

1. MIDI and sound Functions
 (Dura in milliseconds)

 Delay(Dura)
 Beep(Freq,Dura)
 PlayMidi(Instrum,Note,Volume,Dura)
 PlayABC('ABCDEFGA') // Instrum=1=Piano, Volume=100, Dura=250
 Play123('1234567i') // Instrum=1=Piano, Volume=100, Dura=250
 NoteOn(Note,Volume)
 NoteOff(Note,Volume)

2. Input/Output/Keyboard Functions and Procedures

 WaitForKey(ch) // wait for a key pressed

 // Procedures
 InputVar(V,prompt,default) // Display “prompt : “ and ask for a value

// if A is a table, use InputTable instead
 InputTable(V,prompt,default) // Input multiple values, in row x col order
 InputTableRC(V,row,col,prompt,default) // Input value at row,col
 InputTableXY(V,x,y,prompt,default) // Input value at x,y

 // functions
 InputS(prompt,default) // Input a string, return a string, automatically converted to
 // number or boolean depends on the receiving variable type

 // EditTable(V,prompt,default) // display a form to edit table values

3. Math Functions
 (n = integer, x = floating number)

 Integer Functions:

 Round(x) // Round to nearest integer
 Trunc(x) // Truncated to nearest lower integer
 Int(x) // Truncated to integer part
 Ceil(x) // Get nearest higher integer
 Floor(x) // Get nearest lower integer
 Even(n) // 0 if not even number, 1 if even number
 Odd(n) // 0 if not odd number, 1 if odd number
 Fact(n) // factorial : 1*2*3*n-1*n
 Inc(n) // n+1
 Dec(n) // n-1
 RandomRange(n1) // 0..n1-1
 RandomRange(n1,n2) // n1..n2

 Float Functions :

 Random() // 0..1
 Random(n1) // 0..n1-1
 Random(n1,n2) // n1..n2
 Abs(x) // absolute value of x

 Sign(x) // sign of x : +1 if > 0, 0 if zero, -1 if < 0
 Deg(x) // Degree of a radiant angle
 Rad(x) // Radiant of a degree angle
 Sqrt(x) // square root of x
 Sqr(x) // x^2
 Power(x,y) // x^y
 Exp(x) // e^x
 Log(x) // Ln(x)/Ln(10)
 Log(a,b) // Ln(a)/Ln(b)
 LogN(a,b) // Ln(a)/Ln(b)
 Log2(x) // Log2(x)
 Log10(x) // Log10(x)
 Ln(x) // Ln(x)
 Max(x1,x2,...) // max of (x1,x2,...)
 Min(x1,x2,...) // min of (x1,x2,...)
 Length(x1,x2,...) // Sqrt(x1^2 + x2^2 +)
 Avg(x1,x2,...) // (x1+x2+...)/n
 Sum(x1,x2,...) // x1 + x2 + ...
 SumSqr(x1,x2,...) // x1^2 + x2^2 +
 SRSS(x1.x2,...) // Sqrt(x1^2 + x2^2 +)
 CQC(x1,x2,...) // CQC(x1,x2,...)

 Linear Interpolation:

 LinearInterp(x,x1,y1,x2,y2); // Linear interpolation of y using x value

 Trigonometric functions:

 Sin(x) // Sine of x, radian
 Cos(x) // Cosine of x, radian
 Tan(x) // Tangent of x, radian
 Sec(x) // Secant of x, radian
 Cosec(x) // Cosecant of x, radian
 CoTan(x) // CoTangent of x, radian
 SinD(x) // Sine of x, degree
 CosD(x) // Cosine of x, degree
 TanD(x) // Tangent of x, degree
 SecD(x) // Secant of x, degree
 CosecD(x) // Cosecant of x, degree
 CoTanD(x) // CoTangent of x, degree
 Asin(x) // ArcSine of x, radian
 Acos(x) // ArcCosine of x, radian
 Atan(x) // ArcTangent of x, radian
 Asec(x) // ArcSecant of x, radian
 Acosec(x) // ArcCoSecant of x, radian
 Acotan(x) // ArcCoTangent of x, radian
 SinH(x) // Sine Hyperbolic of x, radian
 CosH(x) // Cosine Hyperbolic of x, radian
 TanH(x) // Tangent Hyperbolic of x, radian
 SecH(x) // Secant Hyperbolic of x, radian
 CosecH(x) // Cosecant Hyperbolic of x, radian
 CoTanH(x) // Cotangent Hyperbolic of x, radian
 AsinH(x) // Arc Sine Hyperbolic of x, radian
 AcosH(x) // Arc Cos Hyperbolic of x, radian
 AtanH(x) // Arc Tangent Hyperbolic of x, radian

 AsecH(x) // Arc Secant Hyperbolic of x, radian
 AcosecH(x) // Arc Cosecant Hyperbolic of x, radian
 AcoTanH(x) // Arc CoTangent Hyperbolic of x, radian

 Calculus :

 Vector :

 VecLen(a,b,c,...) // Length : sqrt(a^2 + b^2 + c^2 + ….)
 VecSum(a,b,c,...) // Sum : a + b + c + ...
 VecAvg // Average : (a + b + c + ….)/n
 VecSumSqr // SumSqr : a^2 + b^2 + c^2 + ….
 VecSRSS // SRSS : sqrt(a^2 + b^2 + c^2 + ….)

 Matrix :

 MATRIX_NULL(A) // Matrix, all 0
 MATRIX_UNIT(A) // Matrix, all 1
 MATRIX_RANDOM(A) // Matrix, all random numbers
 MATRIX_COL(A,n) // Column n of matrix A
 MATRIX_ROW(A) // Row n of matrix A
 MATRIX_TRIDIAG(A) // Trdiagonal Matrix A
 MATRIX_TRANSPOSE(A) // Transpose of A
 MATRIX_DETERMINANT(A) // Determinant of A
 MATRIX_INVERSE(A) // Inverse of A
 MATRIX_FACTORIZE(A) // Factorize of A = L.D.L^T
 MATRIX_SOLVER(A,X,Y) // Solve A.x = y

 Linear equation :

 Eigen Value :

5. String Functions

 Trim(s) // remove pre and post spaces
 UpperCase(s) // change all characters to uppercase
 LowerCase(s) // change all characters to lowercase
 Copy(s,p,n) // copy a substring from location p, n characters
 IntToStr(n) // convert integer n to string
 NumToStr(x) // convert numeric x to string
 TimeToStr(t) // convert time t to string
 DateToStr(d) // convert date d to string
 Length(s) // length of a string
 Pos(s1,s) // find a string s1 inside s
 Val(s) // value of a string
 StrToInt(s) // string to integer
 StrToNum(s) // string to numeric
 StrToTime(s) // string to time
 StrToDate(s) // string to date

6. Graphic Functions

 SCRWID // Screen Width in pixels
 SCRHGT // Screen Height in pixels

 SelectImage(objname) // Select Image from an object
 PenMode(pm) // Set Pen Mode
 Color(color) // Set color(color)
 Sound(filename,duration,pitch) // Play a wav file

 Text(x,y,agl,fsize,fcolor,txt) // Draw a string with angle agl, size fsize
 Line(x1,y1,x2,y2,thick,style,color) // Draw a line from x1,y1 to x2,y2
 Rect(x1,y1,x2,y2,thick,style,color,fillstyle,fillcolor) // Draw a rectangle from x1,y1 to x2,y2
 Circle(x,y,r[,thick,style,color,fillstyle,fillcolor) // Draw a circle using x,y,r
 Ellipse(x,y,rx,ry,thick,style,color,fillstyle,fillcolor) // Draw an ellipse using x,y,rx,ry
 Polygon(x,y,r,n,startagl,thick,style,color,fillstyle,fillcolor) // Draw a n-sides polygon

 Pen Mode Pixel color

 pmCopy Pen color specified in the Color property
 pmXor Combination of colors in either pen or canvas background, but not both
 pmNotCopy Inverse of pen color
 pmNotXor Inverse of pmXor: combination of colors in either pen or canvas background, but not

both
 pmBlack Always black
 pmWhite Always white
 pmNop Unchanged
 pmNot Inverse of canvas background color
 pmMerge Combination of pen color and canvas background color
 pmNotMerge Inverse of pmMerge: combination of pen color and canvas background color
 pmMask Combination of colors common to both pen and canvas background
 pmNotMask Inverse of pmMask: combination of colors common to both pen and canvas bkg
 pmMergePenNot Combination of pen color and inverse of canvas background
 pmMaskPenNot Combination of colors common to both pen and inverse of canvas background
 pmMergeNotPen Combination of canvas background color and inverse of pen color
 pmMaskNotPen Combination of colors common to both canvas background and inverse of pen

7. File Functions

 OpenInpText(fname) // Open input text file
 CloseInpText(fname) // Close input text file
 Readln(v1,v2,v3,...) // Read a line from input text file

 OpenOutText(fname) // Open output text file
 CloseOutText(fname) // Close output text file
 Writeln(v1,v2,v3,...) // Write several variables

8. Multimedia and GUI

 PlaySound(fname) // Play a wav file
 PlayVideo(fname) // Play a video file
 Waitforkey(char) // Wait for a key pressed
 Display(s) // Display a string and wait for user to press OK
 Print(s) // Print a string or variable to output screen
 Print A; // Print a string or variable to output screen

9. Data Acquisition and Sensors

10. Structural Analysis Module

 Structural Analysis Module in BALI is using SANS FEM Module.
 A structure model including node coordinates, supports, members, and joint/member loads can be
 defined using simple syntax.
 Several element types area available: Truss, Frame, QUAD4
 Several analysis methods are provided : Static Analysis, Dynamic Spectrum Response Analysis, and
 Linear Time History Analysis.
 After analysis, deformed shape, mode shape, node displacements, support reactions, and member forces
 can be displayed using table and graphics.

 SANSFEM COMMANDS:

 SANS_INIT(NLS,NLC,R1,R2,R3,R4,R5,R6, Flag1)
Initialize SANSFEM :
NLS = number of load combination
NLC = number of load cases
R1..R6 = restraint for direction 1..6 (0=free, 1=restrained)
Flag1 = debugging flag

 SANS_PROP(matname,sctname : string; Es,G,PR,C,Ywg,Ag,Av,Aw,Ix,Iy,Iz : double;
 scttype : integer; d,bw,bf,tf,bb,tb,a : double;

 mopt,comp,nb : integer; n,bc,tphc,dc,fc,fy : double)
 Set material properties :

matname : material name
sctname : section name
Es : elastic modulus
G : shear modulus
PR : poisson ratio
C : thermal coefficient
Ywg : unit weight
Ag : gross area
Av : shear area, major direction
Aw : weight area
Ix : inertia in x direction
Iy : inertia in y direction
Iz : inertia in z direction
scttype : section type
d : section depth
b : section web width = tw
bf : section top flange width
tf : section flange thickness
bb : section bottom flange width
tb : section bottom flange thickness
a : section lip
mopt : material option
comp : composite option
nb : number of rebar
n : n= Es/Ec
bc : encased width
tphc : encased height
dc : distance between centroid of slab to centroid of beam
fc : concrete strength
fy : steel yield strength

 SANS_NODE(id, x,y,z)
Define Node coordinates:
id : node id
x : x coordinate
y : y coordinate
z : z coordinate

 SANS_SUPPORT(id,j,R1,R2,R3,R4,R5,R6)
Define Support Condition:
id : support id
j : node id
R1 : restraint in global 1 direction
R2 : restraint in global 2 direction
R3 : restraint in global 3 direction
R4 : restraint in global 4 direction
R5 : restraint in global 5 direction
R6 : restraint in global 6 direction

 SANS_TRUSS(name,n1,n2,mat)
Define a truss element data
name : truss element name, can be a number or alphabet + number
n1 : first node n1
n2 : second node n2
mat : material index

 SANS_TRUSSXYZ(name,x1,y1,z1,x2,y2,z2,mat)
Define a truss element data
name : truss element name, can be a number or alphabet + number
n1 : first node n1
n2 : second node n2
mat : material index

 SANS_FRAME(name, n1,n2, alpha,rgzf1,rgzf2,mat,rel,rge)
Define a frame Element Data
name : truss element name, can be a number or alphabet + number
n1 : first node n1
n2 : second node n2
mat : material index
alpha : section rotation angle
rgzf1 : rigid end offset factor 1
rgzf2 : rigid end offset factor2
rel : release option
rge : rigid end offset option

 SANS_FRAMEXYZ(name, x1,y1,z1,x2,y2,z2, alpha,rgzf1,rgzf2,mat,rel,rge)
Define a frame Element Data
name : truss element name, can be a number or alphabet + number
x1,y1,z1 : first node coordinates
x2,y2,z2 : second node coordinates
mat : material index
alpha : section rotation angle
rgzf1 : rigid end offset factor 1
rgzf2 : rigid end offset factor2

rel : release option
rge : rigid end offset option

 SANS_QUAD4 or SANS_SHELL(name,n1,n2,n3,n4,tp,mat)
Define a shell quad4 4-node Element Data
name : shell element name, can be a number or alphabet + number
n1..n4 : node index
tp : shell thickness
mat : material index

 SANS_QUAD4XYZ or SANS_SHELLXYZ(name,x1,y1,z1,...x4,y4,z4,tp,mat)
Define a shell quad4 4-node Element Data
name : shell element name, can be a number or alphabet + number
xi,yi,zi : node i coordinate
tp : shell thickness
mat : material index

 SANS_SOLID(name,n1,n2,n3,n4,n5,n6,n7,n8,tp,mat)
Define a brick solid 8-node Element Data
name : shell element name, can be a number or alphabet + number
n1..n8 : node index
tp : shell thickness
mat : material index

 SANS_SOLIDXYZ(name,x1,y1,z1,...x8,y8,z8,tp,mat)
Define a brick solid 8-node Element Data
name : shell element name, can be a number or alphabet + number
xi,yi,zi : node i coordinate
tp : shell thickness
mat : material index

 SANS_LOADCOMB(ldcomb,name,SW,DL,LL,EQX,EQZ,WX,WZ,EPX,EPZ,PS)
Add a Load combination
ldcomb : load combination id
name : load combination name
SW : load factor for Self Weight
DL : load factor for Dead Load
LL : load factor for Live Load
EQX : load factor for Earthquake in X direction
EQZ : load factor for Earthquake in Z direction
WX : load factor for Wind in X direction
WZ : load factor for Wind in Z direction
EPX : load factor for Earth pressure in X direction
EPZ : load factor for Earth pressure in Z direction
PS : load factor for prestressing load

 SANS_JLOAD(name,ldcase,j,fx,fy,fz,mx,my,mz)
Add a Joint Load Data
name : joint load name
ldcase : joint load case id
j : node id
fx : force joint load in global X direction
fy : force joint load in global Y direction
fz : force joint load in global Z direction

mx : moment load in global X direction
my : moment load in global Y direction
mz : moment load in global Z direction

 SANS_JLOADXYZ(name,ldcase,x,y,z,fx,fy,fz,mx,my,mz)
Add a Joint Load Data
name : joint load name
ldcase : joint load case id
x,y,z : coordinate of joint load
fx : force joint load in global X direction
fy : force joint load in global Y direction
fz : force joint load in global Z direction
mx : moment load in global X direction
my : moment load in global Y direction
mz : moment load in global Z direction

 SANS_TLOAD(name,lc,m,typ,np,p1,p2,p3,p4,p5)
Add a truss member Load Data
name : truss member load name
lc : load case id
m : member id
typ : member load type
np : number of load parameters
p1..p5 : member load parameters

 SANS_FLOAD(name,lc,m,typ,np,p1,p2,p3,p4,p5)
Add a frame member Load Data
name : frame member load name
lc : load case id
m : member id
typ : member load type
np : number of load parameters
p1..p5 : member load parameters

 SANS_DOF
Compute active DOF index

 SANS_SHOWDOF
Show generated active DOF

 SANS_SKYLINE
Compute stiffness matrix variable band

 SANS_SHOWFROW
Show FROW values = first nonzero row of columns of global stiffness matrix

 SANS_SHOWDIAG
Show diagonal entries of global stiffness matrix

 SANS_STIFF
Compute global stiffness matrix

 SANS_SHOWSTIFF
Show global stiffness matrix

 SANS_LOAD(ldc)
Compute global load vector for loadcase ldc

 SANS_MASS
Compute global mass vector

 SANS_FACTORIZE
Factorize the global stiffness matrix to L.D.L^ format

 SANS_SHOWXVEC
Show global displacement X vector

 SANS_SOLVER(ldc)
Solve global displacement vector x for loadcase ldc F : K.x = F

 SANS_EIGEN
Compute eigen problem

 SANS_DYNRES
Compute Dynamic Response Spectrum Analysis

 SANS_STOREDISP(ldcomb)
Store displacement vector for loadcomb ldcomb

 SANS_COMPUTEFORCE(ldcomb)
Compute element forces for load combination ldcomb

 SANS_STOREREACT(ldcomb)
Compute reactions for load combination ldcomb

 SANS_GETDISP(n,op,lsc)
Get a node displacement
n : node id
op : option, 0=ldcase, 1=ldcomb
lsc : ldcase or ldcomb

 SANS_GETREACT(n,op,lsc)
Get a nodal reaction
n : node id
op : option, 0=ldcase, 1=ldcomb
lsc : ldcase or ldcomb

 SANS_GETTRUSSF(m,op,lsc)
Get a truss member local forces
m : member id
op : option, 0=ldcase, 1=ldcomb
lsc : ldcase or ldcomb

 SANS_GETFRAMEF(m,op,lsc)
Get a frame member local forces
m : member id
op : option, 0=ldcase, 1=ldcomb
lsc : ldcase or ldcomb

 SANS_GETQUAD4F(m,op,lsc)

Get a quad4 member local forces
m : member id
op : option, 0=ldcase, 1=ldcomb
lsc : ldcase or ldcomb

 SANS_REPORT
Generate Analysis Report

 SANS_GRAPH(ldcomb,ldcase)
Show graphics
ldcomb : load comb index, if zero, use individual ldcase
ldcase : locad case index

MIDI Instrument Code Number

